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Abstract. We present and evaluate a new, simple, pipelined algorithm
for large, irregular all-gather problems, useful for the implementation
of the MPI Allgatherv collective operation of MPI. The algorithm can
be viewed as an adaptation of a linear ring algorithm for regular all-
gather problems for single-ported, clustered multiprocessors to the ir-
regular problem. Compared to the standard ring algorithm, whose per-
formance is dominated by the largest data size broadcast by a process
(times the number of processes), the performance of the new algorithm
depends only on the total amount of data over all processes. The new
algorithm has been implemented within different MPI libraries. Bench-
mark results on NEC SX-8, Linux clusters with InfiniBand and Gigabit
Ethernet, Blue Gene/P, and SiCortex systems show huge performance
gains in accordance with the expected behavior.

1 Introduction

The all-gather problem is a basic collective communication operation, in which
each participant of a predefined group wants to broadcast personal data to
all other group members. In the MPI standard, this functionality is embodied
in the regular MPI Allgather collective, in which each process contributes the
same amount of data, and in the irregular MPI Allgatherv collective, where the
amount of data can be freely chosen for the different processes [8]. For both MPI
collectives, all participating processes know the sizes of the data to be broadcast
by all other processes. The irregular all-gather operation is used for instance in
linear algebra kernels for matrix multiplication and LU factorization [1].

The regular all-gather problem has been intensively studied (theoretically un-
der the term gossiping, but is also known as broadcast-to-all, all-to-all-broadcast,
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as well as many other names) [5, 6], and many algorithms have been proposed
and/or implemented as part of MPI libraries for various systems and communi-
cation models [1–3, 7, 9, 10]. The more challenging, irregular all-gather problem
has received much less attention, and MPI libraries typically use the same al-
gorithm for both MPI Allgather and MPI Allgatherv. For irregular problems
with considerable differences between the amount of data contributed by the
processes, this can have huge performance drawbacks. For extreme cases, the
resulting performance loss can amount to orders of magnitude (cf. Section 3).

In this paper, we present an algorithm for large, irregular all-gather problems.
The underlying idea is quite simple and can be viewed as an adaptation to the
irregular problem of a ring-based algorithm for regular all-gather problems for
single-ported, clustered multiprocessors. The algorithm has been implemented
for several MPI libraries, and evaluated on diverse systems, namely NEC SX-8,
two Linux clusters, IBM Blue Gene/P, and SiCortex 5832. We demonstrate sig-
nificant performance improvements over a standard MPI Allgatherv algorithm,
depending on the amount of irregularity in the benchmark scenarios.

2 Algorithm and Implementation(s)

In the following, p is the number of participating (MPI) processes, numbered
consecutively from 0 to p− 1. We let mi denote the size of the data contributed
by process i, and m =

∑p−1
i=0 mi the total amount of data that eventually has

to be gathered by all processes. For large data, we assume that the time for
transmitting a message of size m′ is simply O(m′). For most of the following
discussion, a detailed communication cost model is unnecessary.

2.1 Standard, linear ring Algorithm

A basic (folklore) algorithm for large, regular all-gather problems is the linear

ring. The algorithm performs p − 1 communication rounds. In each round pro-
cess i sends (starting with its own data) an already known block of data of size
m′ to process (i + 1) mod p and receives an unknown block of data from pro-
cess (i − 1) mod p. For regular problems where all blocks are of the same size
mi = m′, the completion time of the ring algorithm is O((p−1)m′) = O(m−m′).
The number of communication start-ups (latency) scales linearly with p. This is
unproblematic for large m′, but for small problems, an algorithm with a logarith-
mic number of start-ups is clearly preferable [1, 3, 10]. The linear ring algorithm
is straightforward to implement. For systems with single-ported, bidirectional
communication capabilities (where each process can at the same time send data
to another process and receive data from a possibly different process) it can use
the system communication bandwidth to full capacity. For irregular all-gather
problems, where the data sizes mi can vary arbitrarily over the processes, the
algorithm can however perform poorly. The running time is determined by the
largest amount of data m′ = maxp−1

i=0 mi, which has to be sent along the ring in
each round, and is therefore O((p− 1)m′). In particular, (p− 1)m′ can be much
larger than the total amount of data m.
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Fig. 1. The linear ring algorithm on a cluster of SMP nodes with different number of
MPI processes per node. The processes are (virtually) ranked such that one process
at each node receives data from another node, and one process sends data to another
node in each round.

2.2 Pipelined (blocked) ring Algorithm

We first observe that the linear ring algorithm can also be used for the regular
all-gather problems on clustered multiprocessors (like clusters of SMP nodes)
with a single-ported communication network. In that case the ring is organized
such that exactly one process i per SMP node has its predecessor (i − 1) mod p
on another SMP node, and exactly one process j per SMP node has its successor
(j + 1) mod p on another node. To accomplish this, a (virtual) reranking of the
MPI processes might be necessary. The clustered, linear ring algorithm is now
communication-bandwidth optimal, because in each round one process on each
node receives a block of data and one process sends a block of data. This holds
also for the case where the number of MPI processes per cluster node is not
identical, and is illustrated in Figure 1.

In [11] it is observed that regular collective communication problems like the
all-gather problem induce corresponding irregular problems over a set of nodes
in a clustered system. Therefore, if the communication capabilities of processors
and nodes in a cluster are similar (for instance, single ported), an algorithm for
solving a regular problem on a clustered system (with possibly different number
of processes per cluster node) can be used to solve its irregular counterpart over
a set of processors. This observation can be exploited to convert the clustered
linear ring algorithm into an algorithm for the irregular all-gather problem.

To accomplish this the data of process i of size mi is associated with a virtual
cluster node, and divided into bi = max(1, ⌈mi/B⌉) blocks of size at most B.
Each block is associated with a virtual processor in the node. The total number
of blocks is b =

∑p−1
i=0 bi (note that b ≥ p). Every actual process with data size

mi will play the role of a cluster node with bi virtual processors. The linear ring
algorithm with regular blocks of size (at most) B now solves the problem in b−1
instead of p−1 communication rounds. The resulting, pipelined (or blocked) ring

algorithm is illustrated in Figure 2. Compared to the linear ring, the advantage
of the pipelined ring algorithm is that (more) regular blocks are sent and received
in each round, for a total time of O((b − 1)B). A small value for B increases
the number of start-ups, and a large value increases the possible round up error.
Therefore a proper balancing needs to be applied to find an optimal value for the
block size parameter. We note that for extremely irregular all-gather problems
where only one process has all the data, the pipelined ring algorithm is equivalent
to a linear broadcast pipeline. For regular problems where mi = m′ for all i, the
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Fig. 2. The clustered, linear ring algorithm viewed as a pipelined (blocked) algorithm
for solving the irregular all-gather problem. For each process, the data mi is divided
into blocks of some maximum block size B (partially full blocks are partially colored).
Process i starts sending block j + k − 1 and receiving block j − 1. After b − 1 rounds,
where b represents the total number of blocks, all processes have gathered all the data.

block size B can be set to m′, in which case the algorithm is identical to the
standard, linear ring. Thus, by choosing B properly, the pipelined ring algorithm
should never perform worse than the linear ring algorithm.

2.3 Determining an optimal block size

We note that for partially full blocks, only the actual data are sent and received
(see again Figure 2). In particular, the empty blocks which arise for processes
with mi = 0 are neither sent nor received. Nevertheless, they contribute to the
total number of communication rounds. We estimate the optimal block size B
as follows, assuming that z denotes the number of processes with mi = 0:

– If z = 0 we take B = minp−1
i=0 mi (as long as this is not too small). This

ensures that all processes are both sending and receiving blocks in (almost)
all rounds.

– If z 6= 0 we try to minimize the time needed for b−1 communication rounds.
Assuming that the remainders in the mi/B terms are equally distributed, we
get an average padding of B/2 for all partially full blocks. We can therefore

simplify b =
∑p−1

i=0 max(1, ⌈mi/B⌉) to b = m
B + p+z

2 . Assuming linear com-
munication costs, where sending and receiving messages of size m′ takes time
α + βm′, the estimated total running time is (b − 1)(α + βB). Minimizing

this term gives an (approximated) optimal block size of B =
√

2αm
β(p+z−2)

3 Experimental Evaluation

We have benchmarked the new MPI Allgatherv implementations with the fol-
lowing distributions of contiguous data over the p MPI processes. A base count c
(which is varied over some interval) is used as seed for the following distributions:

1. Regular: all mi = c are identical, therefore m = pc.
2. Broadcast: m0 = c, all other mi = 0, therefore m = c.
3. Spike: similar to broadcast but all processes contribute some data, m0 = c/2

and mi = c 1
2(p−1) , therefore m = c.



4. Half full: m2⌊i/2⌋ = 2c, and m2⌊i/2⌋+1 = 0, therefore m = pc.

5. Linearly decreasing: mi = 2c (p−1−i)
p−1 , therefore m = pc.

6. Geometric curve: mi−1+j = c p
i log p for i = 1, 2, 4, . . . and j = {0, . . . , i−1},

therefore m = pc.

In distributions (2) and (3) the same total amount of data m = c is gathered
by all processes, so similar running times can be expected (comparable to the
regular distribution with p times smaller data size). The case for distributions (1),
(4), (5) and (6) is analogous, where the total amount of data is m = pc.

We compare our implementations of the new MPI Allgatherv algorithm with
implementations of the standard linear ring algorithm that is still used in many
MPI libraries [9]. The reported running times are minimum times for the last
process to finish over a (small) number of iterations [4].

3.1 Results on an NEC SX-8 vector system

The pipelined ring has been implemented for MPI/SX for the NEC SX-series
of parallel vector computers. It has been benchmarked with the distributions
described above on 30 SX-8 nodes at HLRS in Stuttgart, with 1 and 8 MPI
processes per node, respectively. Selected results are shown in Figure 3.

For the extreme broadcast distribution (2) the pipelined ring outperforms the
standard linear ring by more than a factor of 10 on 30 SX-8 nodes. For 32 MBytes
with a fixed block size B of 1 MByte an improvement of a factor 32×29

29+31 ≈ 15
would have been best possible. Significant improvements can also be observed for
the other distributions. The performance of the standard ring and the pipelined
ring are similar for the regular (1) and the half full (4) distributions. Running
on a randomly permuted communicator instead of MPI COMM WORLD gives almost
identical results. This is a desirable property of an algorithm for a symmetric
(i.e. non-rooted) collective operation like MPI Allgatherv [12].

3.2 Results on a Linux Cluster with InfiniBand

To show the effect of the block size B, the algorithm has also been integrated into
NEC’s MPI/PC version and evaluated on an Intel Xeon based SMP cluster with
InfiniBand interconnect. The running time is compared to the standard, non-
pipelined algorithm for B = 32K, 64K, 128K, 512K, 1024K. Results are shown
in Figure 4. For the spike distribution (3) the pipelined algorithm is faster for
all block sizes. However, the best block size depends not only on the size of the
problem but also on the distribution of data over the processes. This can be seen
in the case of the decreasing distribution (5) where a too small block size makes
the pipelined algorithm perform worse than the standard ring.

3.3 Results on a Linux Cluster with Gigabit Ethernet

We ran the benchmarks on a Linux cluster at Argonne National Laboratory
with 24 nodes, each with two dual-core 2.8 GHz AMD Opteron CPUs (total
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Fig. 3. Results (left to right, top to bottom) for distributions (2), (3), (5) and (6) on
an NEC SX-8 with 30 nodes and 1 MPI process per node, and distributions (2) and (3)
with 8 MPI processes per node. A fixed block size B = 1 MByte has been used. The
base data size is the base count c multiplied by the size of an MPI INT.
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Fig. 4. Results from a Linux Xeon/InfiniBand cluster with 16 × 2 processes with
spike (left) and linearly decreasing (right) distributions, and block size B =
32K, 64K, 128K, 512K, 1024K compared to the non-pipelined algorithm.

of 4 cores per node or 96 cores in the system), and Gigabit Ethernet. We used
MPICH2 1.0.7 as the MPI implementation. Selected results are shown in Fig-
ures 5 and 6. For small problem sizes, the pipelined algorithm performs only
slightly better than the standard algorithm, but as problem size increases, the
difference in performance becomes considerable. Figure 6(right) shows the distri-
bution of communication and idle times for the two algorithms. As expected, the
standard algorithm suffers because many processes remain idle for a long time,
whereas in the pipelined algorithm, communication is more balanced. We also
collected traces of the program execution and plotted them using the Jumpshot
tool, as shown in Figure 7. The penalty due to idle time incurred by the standard
algorithm is clearly visible as the yellow bars.
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Fig. 5. Results with 96 processes on Linux cluster: (left) Spike distribution (right)
Geometric curve distribution. A fixed block size B = 32 KB has been used.
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Fig. 6. Linux cluster: (left) Geometric curve distribution with varying number of pro-
cesses, (right) Communication versus idle time in the extreme case of broadcast distri-
bution

Fig. 7. Jumpshot plot of program trace on Linux cluster for several iterations of all-
gatherv with broadcast distribution: (left) Non-pipelined algorithm, (right) Pipelined
algorithm. Yellow (light) is idle time, purple (dark) is communication time.

3.4 Results on SiCortex

Benchmarks were also performed on the SiCortex 5832 system at Argonne. This
machine has 972 nodes, each with 6 cores, for a total of 5832 processors. The
nodes are connected by a Kautz graph network. In some of our experiments
the native SiCortex MPI implementation failed. We therefore implemented the
standard linear ring algorithm ourselves and compared it with the pipelined
algorithm. Figure 8 shows the results for a test run with a geometric curve dis-
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Fig. 8. Results for the geometric curve distribution: (left) with 5784 processes on the
SiCortex machine and a fixed block size of B = 1 MB, (right) with 4096 processes on
1 rack of the Blue Gene/P and a fixed block size of B = 64 KB

tribution on 5784 processors. The pipelined algorithm significantly outperforms
the standard algorithm as the message size increases.

3.5 Results on IBM Blue Gene/P

Finally, we performed the tests on one rack of the IBM Blue Gene/P at Argonne
National Laboratory (4096 cores). The native implementation of MPI Allgatherv

in the Blue Gene/P’s MPI library uses a very fast hardware-supported algo-
rithm, which outperforms both standard ring and pipelined ring implementa-
tions. Therefore, to fairly compare pipelined and non-pipelined algorithms, we
implemented both these algorithms. Figure 8 shows the results. The pipelined
algorithm performs even better on this machine.

4 Concluding Remarks

We described a simple, pipelined ring algorithm for large, irregular all-gather
problems. The algorithm was implemented within different MPI libraries and
benchmarked on various systems, and in all cases showed considerable improve-
ments over a commonly used linear ring algorithm for problems with signifi-
cant irregularity in the individual message sizes. Determining the best possible
pipeline block size for all distributions of input data still requires more (exper-
imental) work. On regular problem instances the pipelined algorithm performs
similarly to the linear ring, which is bandwidth optimal for that case. Ring
algorithms can likewise be implemented to be largely independent on process
placement in an SMP system. This is an important property for users expecting
(self-) consistent performance of their MPI library [12].
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12. J. L. Träff, W. Gropp, and R. Thakur. Self-consistent MPI performance require-
ments. In Recent Advances in Parallel Virtual Machine and Message Passing In-
terface. 14th European PVM/MPI Users’ Group Meeting, volume 4757 of Lecture
Notes in Computer Science, pages 36–45. Springer-Verlag, 2007.


